Abstract

BackgroundIn arid and hyper arid regions, flash floods directly affect human life and ecosystem balance through soil erosion and sediment exchange between different watersheds. The present study provides an integrated approach using remote sensing and geophysical data, multiple thematic layers, and field investigations to mitigate the flash flood hazard and explore the groundwater potentiality in Sharm El Sheikh area, Egypt, where devastating flash flood hazards and shortage in water supply are critical problems against the development of the touristic city.ResultsA new flood hazard index (FHI) is introduced using the morphometric parameters and multiple thematic layers for the investigated hydrographic basins. The FHI ranges between 55.2 (low) and 73 (very high). The resulted surface runoff from a single event (59 mm/day) reached up to 7.96 mm while the total runoff volume reached up to 20.23 (106) m3 representing about 13.5 % of the total rainfall. Hydrogeologically, the Miocene sediments represent the main aquifer, which is cut by four recognized faults providing opportunities for enhanced groundwater recharge. The integrated geophysical datasets (aeromagnetic and vertical electrical sounding) and borehole data indicate that the subsurface sedimentary succession reaches up to 200 m of Quaternary and Miocene sediments.ConclusionsThe present study introduces a comprehensive system to mitigate floods and increase the opportunity of groundwater recharge that could protect and enhance the environment under arid conditions. The presented approach can be applied in any arid and hyper arid regions with the same conditions.Graphical abstract

Highlights

  • Climate change led to a global increase of the earth surface temperature and decrease of the precipitation amounts, which created stress on groundwater exploration and exploitation (IPCC 2014)

  • The data acquired from the geophysical investigations are considered as another type of remote sensing data that help in detecting hidden subsurface structures

  • The obtained results can be summarized as follows: Landforms demarcation Based on the analyses of Digital Elevation Model (DEM) and Landsat images, the study area can be subdivided to 4 main landforms: basement terrains, coastal plain, alluvial fans, and drainage network (Fig. 3)

Read more

Summary

Introduction

Climate change led to a global increase of the earth surface temperature and decrease of the precipitation amounts, which created stress on groundwater exploration and exploitation (IPCC 2014). The data acquired from the geophysical investigations (e.g., aeromagnetic survey and vertical electrical sounding) are considered as another type of remote sensing data that help in detecting hidden subsurface structures. A preliminary geophysical investigation was necessary to delineate the subsurface structures (i.e., shallow and deep-seated faults) in the study area. The aeromagnetic data provides an effective tool for investigating the deep-seated structures along regional scales (Spector and Grant 1970). The present study provides an integrated approach using remote sensing and geophysical data, multiple thematic layers, and field investigations to mitigate the flash flood hazard and explore the groundwater potentiality in Sharm El Sheikh area, Egypt, where devastating flash flood hazards and shortage in water supply are critical problems against the development of the touristic city

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.