Abstract

The adsorption and flash desorption of hydrogen and the equilibration of H 2 and D 2 has been studied on the (110), (211), (111) and (100) planes of platinum. Desorption from Pt (211), a stepped surface composed of (111) and (100) ledges, yields a desorption spectrum which apparently is a composite of desorption from the individual ledges. Pt (110) is quite similar to the tungsten structural analog, W (211), in that both yield two-peak desorption spectra, and on both planes adsorption kinetics are dramatically different for filling of the two states. On all four planes adsorption kinetics are apparently proportional to (1 − θ) 2, and estimates of the initial sticking probabilities show them to decrease in the order: (110) > (211) > (100) > (111). Equilibration activity follows approximately the same order [(110) > (211) > (111) > (100)] with a factor of ~ 5 difference between the most and least active planes; no extraordinary activity is observed for the stepped surface, Pt(211). Below ~ 570 K equilibration of H 2 and D 2 is activated by less than 2 kcal/mole with the magnitude dependent on the specific face, and above this temperature the reaction is nonactivated. The non-activated case apparently results from absorption followed by statistical mixing on the surface. Calculated rates for HD production per cm 2 based on this model are in excellent agreement with the experimental values for Pt(110) and Pt(211), and in somewhat poorer agreement in the case of Pt (111) and Pt (100). This latter is probably due to the greater inaccuracy in the values of the sticking coefficients on these planes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call