Abstract

An elasto-plastic incremental finite element computer code based on an updated Lagrangian formulation was developed to simulate the flaring and nosing processes of a metal tube in the asisymmetric condition. The extended r min technique was used to treat the elastic–plastic stress state and to solve contact problems at the tool–metal interface. A modified Coulomb’s friction law was introduced to treat the alternation of the sliding–sticking state of friction at the contact interface. The forming performed analysis using the finite element method and experiment. To examine the influence of the thickness ratio and the optimum punch semi-angle and friction on the forming load of the two-ply metal tubes consisting of soft aluminum, hard aluminum, and copper. The calculated tube geometries and the relationship between punch load and stroke are in good agreement with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call