Abstract

The recent discovery of PeV electrons from the Crab nebula, produced on rapid time scales of one day or less with a sharply peaked gamma-ray spectrum without hard X-rays, challenges traditional models of diffusive shock acceleration followed by synchrotron radiation. Here we outline an accleration model involving a DC electric field parallel to the magnetic field in a twisted toroidal field around the pulsar. Sudden developments of resistivity in localized regions of the twisted field are thought to drive the particle acceleration, up to PeV energies, resulting in flares. This model can reproduce the observed time scales of $T \approx 1$ day, the peak photon energies of $U_{\Phi,rr} \approx 1$ MeV, maximum electron energies of $U_{e,rr} \approx 1$ PeV, and luminosities of $L \approx 10^{36}$ erg s$^{-1}$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.