Abstract
We analyze radio observations, magnetograms and extrapolated field line maps, Hα filtergrams, and X-ray observations of two flare events (6 February 1992 in AR 7042 and 25 October 1994 in AR 7792) and study properties, evolution and energy release signatures of sigmoidal loop systems. During both events, the loop configuration seen in soft X-ray (SXR) images changes from a preflare sigmoidal shape to a relaxed post-flare loop system. The underlying magnetic field system consists of a quadrupolar configuration formed by a sheared arcade core and a remote field concentration. We demonstrate two possibilities: a sigmoidal SXR pattern can be due to a single continuous flux tube (the 1992 event). Alternatively, it can be due to a set of independent loops appearing like a sigmoid (the 1994 event). In both cases, the preflare and post-flare loops can be well reproduced by a linear force-free field and potential field, respectively, computed using preflare magnetograms. We find that thermal and non-thermal flare energy release indicators of both events become remarkably similar after applying spatial and temporal scale transformations. Using the spatial scaling between both events we estimated that the non-thermal energy release in the second event liberated about 1.7 times more energy per unit volume. A two-and-a-half times faster evolution indicates that the rate of the energy release per unit volume is more than four times higher in this event. A coronal type II burst reveals ignition and propagation of a coronal shock wave. In contrast, the first event, which was larger and released about a 10 times more energy during the non-thermal phase, was associated with a CME, but no type II burst was recorded. During both events, in addition to the two-ribbon flare process an interaction was observed between the flaring arcade and an emerging magnetic flux region of opposite polarity next to the dominant leading sunspot. The arcade flare seems to stimulate the reconnection process in an `emerging flux-type' configuration, which significantly contributes to the energy release. This regime is characterized by the quasiperiodic injection of electron beams into the surrounding extended field line systems. The repeated beam injections excite pulsating broadband radio emission in the decimetric-metric wavelength range. Each radio pulse is due to a new electron beam injection. The pulsation period (seconds) reflects the spatial scale of the emerging flux-type field configuration. Since broadband decimetric-metric radio pulsations are a frequent radio flare phenomenon, we speculate that opposite-polarity small-scale flux intrusions located in the vicinity of strong field regions may be an essential component of the energy release process in dynamic flares.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.