Abstract

The primary sources of solar energetic (E > 20 MeV) particle (SEP) events are flares and CME-driven shocks. Some studies claim that even up to GeV energies solar flares are major contributors to SEP events. There are several candidate flare processes for producing SEPs, but acceleration in magnetic reconnection regions is probably the most efficient. Previous studies have relied on flare radiation signatures to determine the times and locations of SEP injections. An alternative approach is to use the amount of magnetic flux that gets reconnected during solar flares. The photospheric magnetic flux swept out by flare ribbons is thought to be directly related to the amount of magnetic reconnection in the corona and is therefore a key diagnostic tool for understanding the physical processes in flares and CMEs. We use the database of flare magnetic reconnection fluxes to compare these parameters with peak intensities of SEP events. We find that while sizes of 15 ∼25-MeV SEP events in the western hemisphere correlate with both CME speeds and reconnection fluxes, there are many cases of large reconnection fluxes with no observed SEP events. The occurrence of large reconnection fluxes accompanied by slow CMEs but no SEP events suggests that the CME shocks are the primary, if not the only, sources of high energy (E > 100 MeV) SEP events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call