Abstract

The active site of aspartic proteases, such as HIV-1 protease (PR), is covered by one or more flaps, which restrict access to the active site. For HIV-1 PR, X-ray diffraction studies suggested that in the free enzyme the two flaps are packed onto each other loosely in a semi-open conformation, while molecular dynamics (MD) studies observed that the flaps can also separate into open conformations. In this study, the mechanism of flap opening and the structure and dynamics of HIV-1 PR with semi-open and open flap conformations were investigated using molecular dynamics simulations. The flaps showed complex dynamic behavior as two distinct mechanisms of flap opening and various stable flap conformations (semi-open, open and curled) were observed during the simulations. A network of weakly polar interactions between the flaps were proposed to be responsible for stabilizing the semi-open flap conformation. It is hypothesized that such interactions could be responsible for making flap opening a highly sensitive gating mechanism which control access to the active site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.