Abstract

Diepoxybutane, diepoxyoctane, and mechlorethamine are cytotoxic agents that induce interstrand cross-links between the N7 positions of deoxyguanosine residues on opposite strands of the DNA duplex preferentially at 5'-GNC sequences. We have systematically varied the identity of either the base 5' to the cross-linked deoxyguanosine residues or the intervening base pair to determine flanking sequence effects on cross-linking efficiency. We used synthetic DNA oligomers containing four 5'-N(1)GN(2)C sites that varied either N(1) or N(2). Interstrand cross-links were purified through denaturing polyacrylamide gel electrophoresis and then subjected to piperidine cleavage. The amount of cleavage at each deoxyguanosine residue, representative of cross-linking efficiency at that site, was determined by sequencing gel analysis. Our data suggest that cross-linking efficiency varies with the identity of N(1) similarly (purines > pyrimidines) for diepoxybutane, diepoxyoctane, and mechlorethamine but that the effects of N(2) differ for the three compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.