Abstract

T cell activation requires formation of a tri-molecular interaction between a major histocompatibility complex (MHC), peptide, and T cell receptor. In a common model system, the ovalbumin epitope 323–339 binds the murine class II MHC, I-Ad, in at least three distinct registers. The DO11.10 T cell recognizes the least stable of these, as determined by peptide-MHC dissociation rates. Using exogenous peptides and peptide insertions into a carrier protein in combination with IL-2 secretion assays, we show that the alternate registers do not competitively inhibit display of the active register four. In contrast, this weakly binding register is stabilized by the presence of n-terminal flanking residues active in MHC binding. The DO11.10 hybridoma is sensitive to the presence of specific wild-type residues extending to at least the P-3 peptide position. Transfer of the P-4 to P-2 flanking residues to a hen egg lysozyme epitope also presented by I-Ad increases the activity of that epitope substantially. These results illustrate the inherent complexity in delineating the interaction of multiple registers based on traditional thermodynamic measurements and demonstrate the potential of flanking residue modification for increasing the activity of weakly bound epitopes. The latter technique represents an alternative to substitution of anchor residues within a weakly bound register, which we show can significantly decrease the activity of the epitope to a responding T cell.

Highlights

  • The adaptive immune system responds to foreign proteins through the use of cytotoxic (CD8+) and helper (CD4+) T cells that activate and direct other effectors to mount a protective response

  • These T cells are activated after a productive interaction between the membrane bound T cell receptor (TCR) and the surface of cells presenting a composite peptide/major histocompatibility complex

  • DO11.10 hybridomas were incubated for 24 hours with I-Ad+ A20 lymphoma cells in the presence of peptide, and supernatant was subsequently assessed for the presence IL-2 by a matched pair ELISA as a measure of T cell activation

Read more

Summary

Introduction

The adaptive immune system responds to foreign proteins through the use of cytotoxic (CD8+) and helper (CD4+) T cells that activate and direct other effectors to mount a protective response. These T cells are activated after a productive interaction between the membrane bound T cell receptor (TCR) and the surface of cells presenting a composite peptide/major histocompatibility complex (pMHC). Because of an open-ended peptide-binding groove, Class II MHC typically display peptides with 15–20 or more residues, with the termini extending out from the binding groove [2] These longer peptides present distinct challenges for epitope prediction since they potentiate multiple modes of interaction with the MHC [3,4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call