Abstract

Abstract This paper reports the results of flammability studies for methane, propane, hydrogen, and deuterium gases in air conducted by the Pittsburgh Research Laboratory. Knowledge of the explosion hazards of these gases is important to the coal mining industry and to other industries that produce or use flammable gases. The experimental research was conducted in 20 L and 120 L closed explosion chambers under both quiescent and turbulent conditions, using both electric spark and pyrotechnic ignition sources. The data reported here generally confirm the data of previous investigators, but they are more comprehensive than those reported previously. The results illustrate the complications associated with buoyancy, turbulence, selective diffusion, and ignitor strength versus chamber size. Although the lower flammable limits (LFLs) are well defined for methane (CH4) and propane (C3H8), the LFLs for hydrogen (H2) and its heavier isotope deuterium (D2) are much more dependent on the limit criterion chosen. A similar behavior is observed for the upper flammable limit of propane. The data presented include lower and upper flammable limits, maximum pressures, and maximum rates of pressure rise. The rates of pressure rise, even when normalized by the cube root of the chamber volume (V1/3), are shown to be sensitive to chamber size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.