Abstract

Accidental release of pressurized high flash point heat transfer fluids can result in fire and explosion hazard scenarios in the process industry. An experimental investigation on ignition of aerosols of a heat transfer fluid is carried out, and characterization of aerosol and its ignition process by non-intrusive laser diffraction technique is reported. Propagation speed of the aerosol combustion flame front as analyzed from the laser diffraction measurement agrees with high-speed visual camera observation. Flammability of the aerosol, which is based on the chances of the global flame appearance in the aerosol, is mainly controlled by aerosol droplet size and the droplet volume concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.