Abstract

Detailed numerical calculations based on the solution of the full transport equations have been compared with flamelet calculations in order to analyse the flamelet concept for laminar diffusion flames. The goal of this work is to study the interactive ( Lagrangian Flamelet Model and Interactive Steady Flamelet Model), and non-interactive ( Steady Flamelet Model and Enthalpy Defect Flamelet Model) flamelet models considering both differential diffusion and non-differential diffusion situations, and adiabatic and non-adiabatic conditions. Moreover, a new procedure has been employed to obtain enthalpy defects in the flamelet library, the application of which has been found to be encouraging. The effect of using in-situ, local or stoichiometric scalar dissipation rate conditions, and also the effect of using local or stoichiometric conditions to evaluate the flamelet-like time has been analysed. To improve slow species predictions using the non-interactive models, their transport equations are solved with the reaction terms calculated from the flamelet library, also considering local or stoichiometric conditions in the so-called Extended Flamelet Models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.