Abstract
Oxy-fuel combustion, in combination with carbon capture technologies, has generated significant interest since it has a high potential for rapid CO2 cutbacks for newly built and retrofitted coal-fired power plants. Although research and development of oxy-fuel combustion technologies have been advancing recently, the combustion of solid fuels in an oxygen–carbon dioxide environment is not yet fully understood. In particular, the oxygen content in the recirculated flue gas is an adjustable parameter in oxy-fuel combustion. This work aims to analyze its impact on the thermo-chemical conversion by applying a recently developed approach for accurately predicting pulverized solid fuel combustion to a range of oxy-fuel swirl flames. The employed modeling framework builds upon a detailed solid fuel kinetic mechanism that seamlessly describes the entire solid conversion process. For the description of the gas phase, a combined flamelet modeling approach with large-eddy simulation is applied. This previously introduced high-fidelity framework (Nicolai et al., 2022) was applied to three operating points in a pilot-scale facility, for which in-reactor data is available. The overall model, combined the available experimental data, is employed for the three operating points with different oxidizer O2/CO2 ratios to give deeper insights into combustion. In particular, the influence of the local oxygen partial pressure on the solid fuel conversion is analyzed in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.