Abstract

For the suppression or reduction of self-sustained combustion instabilities, modifications of the burner outlet conditions, that strongly influence the dynamic flame response, seem to be the most promising way. Therefore, to derive a detailed physical understanding of the feedback mechanisms the dynamic flame response characteristics, quantified by flame transfer functions, are required in dependence of flame type and operation conditions of the combustor. In the present paper measurements of flame transfer functions of an industrial, full-scale prototype gas turbine burner are discussed. For the detection of periodically-unsteady OH radical radiation (response of the flame) two different UV detection systems were compared. Because the concentration of electronically-excited OH radicals in the reaction zone and therefore, of the measured UV radiation intensity, is strongly depending on volumetric reaction density and local flame temperatures, the UV radiation intensity commonly used for the quantification of the heat release can be misinterpreted. Hence, two different concepts of fuel gas/air mixture formation have been realized in the experiments to separate and to physically interpret the influence of the mixture formation and its quality on the UV radiation intensity of the determined flame transfer functions. The derived understanding of the complex interactions of mixture mass flow oscillations, fluctuations of the mixture composition and the periodic combustion of ring vortices at a full-scale burner is an essential requirement for the interpretation of flame dynamics based on measurements of the UV radiation intensity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call