Abstract

Here we report nonintrusive local rotational temperature measurements of molecular oxygen, based on coherent microwave scattering (radar) from resonance-enhanced multiphoton ionization (REMPI) in room air and hydrogen/air flames. Analyses of the rotational line strengths of the two-photon molecular oxygen C(3)Π(v=2)←X(3)Σ(v'=0) transition have been used to determine the hyperfine rotational state distribution of the ground X(3)Σ(v'=0) state. Rotationally resolved 2+1 REMPI spectra of the molecular oxygen C(3)Π(v=2)←X(3)Σ(v'=0) transition at different temperatures were obtained experimentally by radar REMPI. Rotational temperatures have been determined from the resulting Boltzmann plots. The measurements in general had an accuracy of ~±60 K in the hydrogen/air flames at various equivalence ratios. Discussions about the decreased accuracy for the temperature measurement at elevated temperatures have been presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call