Abstract

AbstractTungsten‐doped titanium‐dioxide (W‐TiO2) nanoparticles are successfully synthesized using a multiple‐diffusion‐flame burner with a separate center tube. Vaporized titanium tetra‐isopropoxide (TTIP) precursor issues from a center tube to produce TiO2 nanoparticles, while a tungsten mesh, suspended above the surrounding multiple over‐ventilated hydrogen diffusion flames, serves as the solid‐phase metal doping source. At a lower tungsten loading rate, W‐TiO2 nanoparticles are generated, as indicated by an obvious angle shift of 0.15° for the entire x‐ray diffraction spectrum. However, at a higher tungsten loading rate, homogenous nucleation of WOx occurs before or concurrently with TiO2 nucleation, producing mixed nanopowders, permitting fewer tungsten ions to be doped into TiO2. Ultraviolet–visible spectroscopic characterization reveals that the as‐synthesized W‐TiO2 nanoparticles possess augmented absorbing ability in the visible‐light wavelength range, where the band gap is reduced from 3.20 to 3.05 eV, compared with that for the nondoped TiO2 nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call