Abstract

Microbial fuel cells (MFCs) offer a promising alternative energy technology, but suffer from low power densities which hinder their practical applicability. In order to improve anodic power density, we deposited carbon nanostructures (CNSs) on an otherwise plain stainless steel mesh (SS-M) anode. Using a flame synthesis method that did not require pretreatment of SS-M substrates, we were able to produce these novel CNS-enhanced SS-M (CNS-M) anodes quickly (in a matter of minutes) and inexpensively, without the added costs of chemical pretreatments. During fed batch experiments with biomass from anaerobic digesters in single-chamber MFCs, the median power densities (based on the projected anodic surface area) were 2.9 mW m −2 and 187 mW m −2 for MFCs with SS-M and CNS-M anodes, respectively. The addition of CNSs to a plain SS-M anode via flame deposition therefore resulted in a 60-fold increase in the median power production. The combination of CNSs and metallic current collectors holds considerable promise for power production in MFCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.