Abstract
Flame structures and thermoacoustic instabilities of centrally-staged swirl flames fueled with methane at atmospheric pressure are experimentally investigated by varying the stratification ratio (SR) and covering four different partially-premixed modes, namely fully-premixed main and pilot stages, fully-premixed-pilot/partially-premixed-main stages, partially-premixed-pilot/fully-premixed-main stages, and partially-premixed main and pilot stages. The flame structures in the quiet cases at SR = 0–3 are studied, and three basic flame types can be defined with increasing SR: the lifted flame, the attached twin-flame, and the V-shaped flame. The above basic flame structures show deviations in different partially-premixed modes. The links between flame structures and thermoacoustic instabilities are investigated in the unstable cases by exciting thermoacoustic instabilities with higher thermal power at increased global equivalence ratio. The results show that the partial premixing in the main stage excites stronger thermoacoustic instabilities and thus leads to different flame structures. Simplified thermoacoustic network analysis is also conducted to provide an insight into the nature of thermoacoustic instabilities in the three basic flame structures summarized in the unstable cases. The present investigation reveals the effect of partially-premixed modes on flame structures and thermoacoustic instabilities, which can guide the early-stage design and the development of instability control strategies in practical combustion systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.