Abstract

The chemical and thermal structure of a HMX/GAP propellant flame was investigated at a pressure of 0.5 MPa using molecular beam mass spectrometry and a microthermocouple technique. The pressure dependence of the burning rate was measured in the pressure range of 0.5–2 MPa. The mass spectrometric probing technique developed for flames of energetic materials was updated to study the chemical structure of HMX/GAP flames at high pressures. Eleven species, including HMX vapor, were identified, and their concentrations were measured in a zone adjacent to the burning surface at pressures of 0.5 and 1 MPa. Temperature profiles in the propellant combustion wave were measured at pressures of 0.5 and 1 MPa. Species concentration profiles were measured at 0.5 MPa. Two main zones of chemical reactions in the flame were found. The data obtained can be used to develop and validate combustion models for HMX/GAP propellants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.