Abstract

Abstract Ammonium polyphosphate (form I APP) was modified via ion exchange reaction with ethylenediamine, and the resulting modified ammonium polyphosphate (MAPP) was used alone to prepare intumescent flame-retardant (IFR) polypropylene (PP) via melt blending. The flame retardancy of PP containing MAPP was investigated by limiting oxygen index (LOI), vertical burning test (UL-94) and cone calorimeter (CC). The LOI value of PP containing 40 wt% of MAPP reached 32.5%, which increased by 56.9% compared with that of PP with the same content of APP, and the UL-94 rating was V-0 in the case of specimen thickness of 1.6 mm, while the latter had no rating. CC test results showed that the heat release rate (HRR), the mass loss rate (MLR) and the smoke production rate (SPR)of PP/MAPP system decreased significantly compared with neat PP and PP/APP systems. Especially the fire growth rate (FGR) and SPR peak of PP containing 35 wt% MAPP decreased by 89.1% and 63.2% respectively compared with those of PP containing 35 wt% APP. These results demonstrated that only by incorporating the MAPP without additional charring agents, could PP be successfully flame retarded. Fourier transform infrared spectroscopy (FTIR) etc. were used to investigate the flame retardant mechanism of MAPP, and it was found that both the generation of carbon–carbon double bonds after the scission of C–N bonds and the residue consisting of some stable structures such as P–N–C and C–N etc. caused the charring ability to increase dramatically, which must be the principal reason for the much better flame retardancy of PP/MAPP system without any additional charring agent compared with APP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.