Abstract

Cellulosic paper has combined characteristics of renewability, biodegradability, flexibility, and recyclability. Based on disassembly-initiated fiber processing, the conversion of regular paper into a multifunctional wet-strength product was explored. In this concept, disassembly generates cellulosic additives for surface engineering. Encouragingly, the use of the aqueous solvent system containing mixed metal salts allows controllable fiber disassembly and formation of room-temperature-stable cellulosic solutions, leading to wet and dry strengthening of paper following cellulose regeneration. In-situ generation of cellulosic film-forming additives led to the increase of dry and wet strengths by more than 8 and 35 times respectively, in the case of a typical grade of quantitative filter paper. The engineered paper shows flame-retardant, antibacterial, and liquid-barrier features. The combination of functional properties of cellulosic paper can shed light on diversified applications, e.g., replacement of difficult-to-degrade synthetic plastics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.