Abstract

A novel silicon-containing hyperbranched polyphosphonate acrylate (HPA), successfully synthesized via the Michael addition polymerization of tri(acryloyloxyethyl) phosphate (TAEP) with (3-aminopropyl)trimethoxysilane (KH550), was incorporated into the epoxy acrylate resin (EA) to prepare UV-curing flame retardant coatings. The study of thermal degradation of these coatings revealed that HPA can catalyze the degradation of EA, contributing to the formation of thermally stable char layer. The residues of EA/HPA-3 (which contains 30 wt % HPA) at various temperatures were analyzed by X-ray photoelectron spectroscopy (XPS) and the results displayed that phosphorus and silicon elements can well protect the carbonaceous char from thermal-oxidative degradation at 600 °C, but do not work at 800 °C. Besides, the investigation of the flammability illustrated that the addition of HPA increased the limiting oxygen index (LOI) value and reduced the peak heat rate release (HRR) and total heat release (THR).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.