Abstract

ABSTRACT Propagation of one-dimensional “laminar” flame in combustible mixtures with spatially-periodic longitudinal velocity oscillations is investigated within the thermo-diffusive flame model using the large activation energy asymptotic technique. The ratio of the flame propagation velocity in the periodically disturbed versus undisturbed fields X is examined as a function of the amplitude parameter Γ for the complete range of wavelength parameter y (0, ∞). It is found that for infinitely longwave lengths γ →0 the dimensionless flame velocity X decreases monotonically with Γ from unity towards zero without any extinction. For intermediate wavelengths X first increases to a maximum value above unity and then decreases with Γ and eventually at a critical value Γ > Γe becomes less than unity as it continues to decrease towards zero. Therefore, for a given wavelength a critical amplitude of velocity oscillation is identified that results in a maximum burning velocity for the combustible mixture. In the lim...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.