Abstract

This paper focuses on the description of the turbulent flame speed, at gas turbine like conditions, for different syngas mixtures, selected in order to simulate syngas compositions typically derived from gasification of coal, oil, biomass, and used for power generation in integrated gasification combined cycle (IGCC) processes. In this paper the turbulent flame speed is reported as global consumption rate and calculated based on a mass continuity approach applied to the combustor inlet area and the flame front surface, which was detected experimentally. Flame front detection was done by means of planar laser induced fluorescence technique taking OH radicals as seeding dyes. An in-house developed flame front detection software tool has been further improved and utilized in this work in order to better fit ultra-lean H2-rich flames. Experiments were carried out in a High Pressure Test Rig for operating pressures up to 15 bar. Data provided in this paper will focus on a pressure level of 5 bar, adiabatic flame temperatures up to 1900 K, inlet velocities from 40 to 80 m/s, and inlet temperature of 672 and 772 K. As expected, the results highlight the strongly elevated values of turbulent flame speed for high hydrogen containing fuel gas mixtures. Compared with flame speed data for pure CH4 the ratio (STSyn/STCH4) takes up values of 7 to 8. In absolute terms values go up even beyond 10 m/s. With increased H2 content in the mixture the burning velocity raises, due to the faster chemical kinetics characteristic of this compound and due to physical properties of H2 (Le<1) which enhance flame front corrugation (i.e. flame front surface). Inlet velocity and pressure variations showed to have weak effect on the average flame front position whereas this last parameter is strongly affected by the mixture composition, the equivalence ratio and inlet temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.