Abstract

This paper investigated methane/air flame characteristics with hydrogen addition in micro confined combustion space experimentally and computationally. The focus is on the effect of hydrogen addition on the methane/air flame stabilization, the onset of flame with repetitive extinction and ignition (FREI), and the global flame quenching in decreasing continuously combustion space. Furthermore, the effects of hydrogen addition on the flame temperature and the local equivalence ratio distribution were analyzed systematically using numerical simulations. In addition, the effects of hydrogen addition on the concentrations of OH and H radicals, and the critical scalar dissipation rate of local flame extinction were discussed. With a higher hydrogen ratio, the mixing is faster, and the flame is smaller. When the micro confined space is narrower, the heat loss to the combustor walls has a higher impact on the flames. The flames with higher hydrogen ratios have therefore lower peak flame temperatures and lower concentrations of H and OH radicals. The results show that hydrogen addition can effectively widen the stable combustion range of methane/air flames in the micro confined space by about 20% when the hydrogen addition ratio reaches 50%. The frequency and the maximum propagation velocity of FREI flames can be increased as well. The quenching distance of methane/hydrogen/air flames decreases nearly linearly with the increase of hydrogen ratio. This is attributed to the higher critical scalar dissipation rate of local flame extinction in flames with a higher hydrogen ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.