Abstract

A multiphase flamelet/progress variable (FPV) model for the large eddy simulation (LES) of gas-assisted pulverised coal combustion (PCC) is developed. The target of the simulation is the Darmstadt turbulent gas-assisted swirling solid fuel combustion chamber. The coal particles are treated as Lagrangian point particles, the position, momentum and energy of which are tracked. The gas phase is described by the low-Mach Navier-Stokes equations alongside the Eulerian transport equations of the governing variables for the FPV model. The set of chemical states of the PCC flame is pre-tabulated in a six-dimensional flamelet table and determined by the mixing of the primary fuel stream, volatiles and char off-gases with the oxidising air, the progress of chemical reactions, the interphase heat transfer, as well as sub-grid scale variations. A presumed β-PDF approach for the total mixture fraction is applied to capture sub-grid scale effects. The discrete ordinate method (DOM) with the weighted sum of grey gases model (WSGGM) is employed to model radiation. The FPV-LES results are validated against the experimental evidence and a good agreement of the predicted mean and RMS velocities, as well as the mean gas temperature between experiments and simulations is obtained. The contributions of the pilot, volatile and char off-gas fuel streams to the coal flame are analysed. It is found that most regions of the furnace are dominated by either pilot or volatile combustion, while char conversion only occurs in the far downstream and outer furnace regions. The pilot gas dominates the near-wall region inside the quarl, whereas the volatile gas mainly released from small particles dominates a first volatile combustion zone in the interior of the internal recirculation zone. Larger particles heat up more slowly and release their volatile content further downstream, leading to a secondary volatile combustion zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.