Abstract
Flame behavior and blast waves generated during unconfined hydrogen deflagrations were experimentally studied using infrared photography. Infrared photography enables expanding spherical flame behaviors to be measured and flame acceleration exponents to be evaluated. In the present experiments, hydrogen/air mixtures of various concentrations were filled in a plastic tent of thin vinyl sheet of 1 m3 and ignited by an electric spark. The onset of accelerative dynamics on the flame propagation was analyzed by the time histories of the flame radius and the stretched flame speed. The results demonstrated that the self-acceleration of the flame, which was caused by diffusional-thermal and hydrodynamic instabilities of the blast wave, was influenced by hydrogen deflagrations in unconfined areas. In particular, it was demonstrated that the overpressure rapidly increased with time. The burning velocity acceleration was greatly enhanced with spontaneous-turbulization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Loss Prevention in the Process Industries
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.