Abstract

We study the evolution of premixed methane-air flames in large-scale obstructed channels using reactive CFD simulations. We vary the channel height d, the blockage ratio br, and the scaled distance between obstacles L/d to study their effects on the distance to DDT, LDDT, and the distance to the shock-flame complex, LSF. The results of simulations show two main effects. On one hand, the increase of br and decrease of L/d promote the flame acceleration and reduce LSF and LDDT. On the other hand, some configurations with higher br and smaller L/d prevent the detonation development. As a result, the leading shock and the flame never merge, and continue to propagate as a quasi-steady-state shock-flame complex. A collision of this complex with solid structures generates high pressures and strong reflected shocks that can ignite a detonation. This detonation would propagate in a shock-compressed material and result in extremely high pressures exceeding pressures of a regular detonation. Thus, the distance LSF at which the shock-flame complex forms provides an important measure of a destructive potential in addition to LDDT. This is particularly relevant for channels with high br where LSF can be significantly shorter than LDDT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call