Abstract
BackgroundAccurate segmentation of MS lesions on MRI is difficult and, if performed manually, time consuming. Automatic segmentations rely strongly on the image contrast and signal-to-noise ratio. Literature examining segmentation tool performances in real-world multi-site data acquisition settings is scarce.ObjectiveFLAIR2, a combination of T2-weighted and fluid attenuated inversion recovery (FLAIR) images, improves tissue contrast while suppressing CSF. We compared the use of FLAIR and FLAIR2 in LesionTOADS, OASIS and the lesion segmentation toolbox (LST) when applied to non-homogenized, multi-center 2D-imaging data.MethodsLesions were segmented on 47 MS patient data sets obtained from 34 sites using LesionTOADS, OASIS and LST, and compared to a semi-automatically generated reference. The performance of FLAIR and FLAIR2 was assessed using the relative lesion volume difference (LVD), Dice coefficient (DSC), sensitivity (SEN) and symmetric surface distance (SSD). Performance improvements related to lesion volumes (LVs) were evaluated for all tools. For comparison, LesionTOADS was also used to segment lesions from 3 T single-center MR data of 40 clinically isolated syndrome (CIS) patients.ResultsCompared to FLAIR, the use of FLAIR2 in LesionTOADS led to improvements of 31.6% (LVD), 14.0% (DSC), 25.1% (SEN), and 47.0% (SSD) in the multi-center study. DSC and SSD significantly improved for larger LVs, while LVD and SEN were enhanced independent of LV. OASIS showed little difference between FLAIR and FLAIR2, likely due to its inherent use of T2w and FLAIR. LST replicated the benefits of FLAIR2 only in part, indicating that further optimization, particularly at low LVs is needed. In the CIS study, LesionTOADS did not benefit from the use of FLAIR2 as the segmentation performance for both FLAIR and FLAIR2 was heterogeneous.ConclusionsIn this real-world, multi-center experiment, FLAIR2 outperformed FLAIR in its ability to segment MS lesions with LesionTOADS. The computation of FLAIR2 enhanced lesion detection, at minimally increased computational time or cost, even retrospectively. Further work is needed to determine how LesionTOADS and other tools, such as LST, can optimally benefit from the improved FLAIR2 contrast.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.