Abstract

BackgroundOne of the causes of male infertility is associated with altered spermatozoa motility. These sperm features are frequently analyzed by image-based approaches, which, despite allowing the acquisition of crucial parameters to assess sperm motility, they are unable to provide details regarding the flagellar beating forces, which have been neglected until now.ResultsIn this work we exploit Fluidic Force Microscopy to investigate and quantify the forces associated with the flagellar beating frequencies of human spermatozoa. The analysis is performed on two groups divided according to the progressive motility of semen samples, as identified by standard clinical protocols. In the first group, 100% of the spermatozoa swim linearly (100% progressive motility), while, in the other, spermatozoa show both linear and circular motility (identified as 80 − 20% progressive motility). Significant differences in flagellar beating forces between spermatozoa from semen sample with different progressive motility are observed. Particularly, linear motile spermatozoa exhibit forces higher than those with a circular movement.ConclusionsThis research can increase our understanding of sperm motility and the role of mechanics in fertilization, which could help us unveil some of the causes of idiopathic male infertility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call