Abstract

The surface distribution of flagella in peritrichous bacterial cells has been traditionally assumed to be random. Recently, the presence of a regular grid-like pattern of basal bodies has been suggested. Experimentally, the manipulation of the anchoring points of flagella in the cell membrane is difficult, and thus, elucidation of the consequences of a particular pattern on bacterial locomotion is challenging. We analyze the bundle formation process and swimming properties of Bacillus subtilis-like cells considering random, helical, and ring-like arrangements of flagella by means of mesoscale hydrodynamics simulations. Helical and ring patterns preferentially yield configurations with a single bundle, whereas configurations with no clear bundles are most likely for random anchoring. For any type of pattern, there is an almost equally low probability to form V-shaped bundle configurations with at least two bundles. Variation of the flagellum length yields a clear preference for a single major bundle in helical and ring patterns as soon as the flagellum length exceeds the body length. The average swimming speed of cells with a single or two bundles is rather similar, and approximately 50% larger than that of cells of other types of flagellar organization. Considering the various anchoring patterns, rings yield the smallest average swimming speed independent of the type of bundle, followed by helical arrangements, and largest speeds are observed for random anchoring. Hence, a regular pattern provides no advantage in terms of swimming speed compared to random anchoring of flagella, but yields more likely single-bundle configurations.Graphic abstract

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.