Abstract

In this paper, we develop the theory of flag manifold over a semifield for any Kac-Moody root datum. We show that the flag manifold over a semifield admits a natural action of the monoid over that semifield associated with the Kac-Moody datum and admits a cellular decomposition. This extends the previous work of Lusztig, Postnikov, Rietsch and others on the totally nonnegative flag manifolds (of finite type) and the work of Lusztig, Speyer, Williams on the tropical flag manifolds (of finite type). As a by-product, we prove a conjecture of Lusztig on the duality of totally nonnegative flag manifold of finite type.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.