Abstract

Real-time signal generation methods for detection and characterization of low-abundance mutations in genomic DNA are powerful tools for cancer diagnosis and prognosis. Mutations in codon 12 of the oncogene KRAS, for example, are frequently found in several types of human cancers. We have developed a novel real-time PCR technology, FLAG (FLuorescent Amplicon Generation) and adapted it for simultaneously (i) amplifying mutated codon 12 KRAS sequences, (ii) monitoring in real-time the amplification and (iii) genotyping the exact nucleotide alteration. FLAG utilizes the exceptionally thermostable endonuclease PspGI for real-time signal generation by cleavage of quenched fluorophores from the 5′-end of the PCR products and, concurrently, for selecting KRAS mutations over wild type. By including peptide-nucleic-acid probes in the reaction, simultaneous genotyping is achieved that circumvents the requirement for sequencing. FLAG enables high-throughput, closed-tube KRAS mutation detection down to ∼0.1% mutant-to-wild type. The assay was validated on model systems and compared with allele-specific PCR sequencing for screening 27 cancer specimens. Diverse applications of FLAG for real-time PCR or genotyping applications in cancer, virology or infectious diseases are envisioned.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.