Abstract

The assembly and maintenance of cilia depends on intraflagellar transport (IFT). Activated IFT motor kinesin-II enters the cilium with loaded IFT particles comprising IFT-A and IFT-B complexes. At the ciliary tip, kinesin-II becomes inactivated, and IFT particles are released. Moreover, the rate of IFT entry is dynamically regulated during cilium assembly. However, the regulatory mechanism of IFT entry and loading/unloading of IFT particles remains elusive. We show that the kinesin-II motor subunit FLA8, a homolog of KIF3B, is phosphorylated on the conserved S663 by a calcium-dependent kinase in Chlamydomonas. This phosphorylation disrupts the interaction between kinesin-II and IFT-B, inactivates kinesin-II and inhibits IFT entry, and is also required for IFT-B unloading at the ciliary tip. Furthermore, our data suggest that the IFT entry rate is controlled by regulation of the cellular level of phosphorylated FLA8. Therefore, FLA8 phosphorylation acts as a molecular switch to control IFT entry and turnaround.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call