Abstract

Simple SummaryTwo endocrine hormones, ecdysone and juvenile hormone (JH), control insect development and reproduction. Some studies in the literature have suggested that FKBP39 functions as a transcriptional factor and regulates the JH pathway in Drosophila. However, the physiological roles of FKBP39 are still elusive. To determine the FKBP39 roles in vivo, we first developed an antibody to check the FKBP39 expression pattern and then detected JH activity-related phenotypes in fkbp39 mutants, such as pupariation, reproduction, and Kr-h1 expression. We found that FKBP39 expresses at a high level and controls JH activity at the larval stage. Moreover, we found that rp49, the most widely used reference gene for Real-time quantitative PCR (qRT-PCR), significantly decreased in the fkbp39 mutant. This work will provide valuable information for studies on JH activity and insect development.FK506-binding protein 39kD (FKBP39) localizes in the nucleus and contains multiple functional domains. Structural analysis suggests that FKBP39 might function as a transcriptional factor and control juvenile hormone (JH) activity. Here, we show that FKBP39 expresses at a high level and localizes in the nucleolus of fat body cells during the first two larval stages and early third larval stage. The fkbp39 mutant displays delayed larval-pupal transition and an increased expression of Kr-h1, the main mediator of the JH pathway, at the early third larval stage. Moreover, the fkbp39 mutant has a fertility defect that is independent of JH activity. Interestingly, the expression of rp49, the most widely used reference gene for qRT-PCR in Drosophila, significantly decreased in the fkbp39 mutant, suggesting that FKBP39 might regulate ribosome assembly. Taken together, our data demonstrate the expression pattern and physiological roles of FKBP39 in Drosophila.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call