Abstract

A vertex in a graph is referred to as fixed if it is mapped to itself under every automorphism of the vertices. The fixing number of a graph is the minimum number of vertices, when fixed, that fixes all of the vertices in the graph. Fixing numbers were first introduced by Laison and Gibbons, and independently by Erwin and Harary. Fixing numbers have also been referred to as determining numbers by Boutin. The main motivation is to remove all symmetries from a graph. A very simple application is in the creation of QR codes where the symbols must be fixed against any rotation. We determine the fixing number for several families of graphs, including those arising from combinatorial block designs. We also present several infinite families of graphs with an even stronger condition, where fixing any vertex in a graph fixes every vertex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.