Abstract

TCR repertoire diversity can influence the efficacy of CD8(+) T-cell populations, with greater breadth eliciting better protection. We analyzed TCR beta diversity and functional capacity for influenza-specific CD8(+) T cells expressing a single TCR alpha chain. Mice (A7) transgenic for the H2K(b)OVA(257-264)-specific V alpha 2.7 TCR were challenged with influenza to determine how fixing this "irrelevant" TCR alpha affects the "public" and restricted D(b)NP(366) (+)CD8(+) versus the "private" and diverse D(b)PA(224) (+)CD8(+) responses. Though both D(b)NP(366) (+)CD8(+) and D(b)PA(224) (+)CD8(+) sets are generated in virus-primed A7 mice, the constrained D(b)NP(366) (+)CD8(+) population lacked the characteristic, public TCRV beta 8.3, and consequently was reduced in magnitude and pMHC-I avidity. For the more diverse D(b)PA(224) (+)CD8(+) T cells, this particular forcing led to a narrowing and higher TCR beta conservation of the dominant V beta 7, though the responses were of comparable magnitude to C57BL/6J controls. Interestingly, although both the TCR beta diversity and the cytokine profiles were reduced for the D(b)NP(366) (+)CD8(+) and D(b)PA(224) (+)CD8(+) sets in spleen, the latter measure of polyfunctionality was comparable for T cells recovered from the infected lungs of A7 and control mice. Even "sub-optimal" TCR alpha beta pairs can operate effectively when exposed in a milieu of high virus load. Thus, TCR beta diversity is important for optimal TCR alpha beta pairing and function when TCR alpha is limiting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call