Abstract

In many Unmanned Aerial Vehicle (UAV) operations, accurately estimating the UAV’s position and orientation over time is crucial for controlling its trajectory. This is especially important when considering the landing maneuver, where a ground-based camera system can estimate the UAV’s 3D position and orientation. A Red, Green, and Blue (RGB) ground-based monocular approach can be used for this purpose, allowing for more complex algorithms and higher processing power. The proposed method uses a hybrid Artificial Neural Network (ANN) model, incorporating a Kohonen Neural Network (KNN) or Self-Organizing Map (SOM) to identify feature points representing a cluster obtained from a binary image containing the UAV. A Deep Neural Network (DNN) architecture is then used to estimate the actual UAV pose based on a single frame, including translation and orientation. Utilizing the UAV Computer-Aided Design (CAD) model, the network structure can be easily trained using a synthetic dataset, and then fine-tuning can be done to perform transfer learning to deal with real data. The experimental results demonstrate that the system achieves high accuracy, characterized by low errors in UAV pose estimation. This implementation paves the way for automating operational tasks like autonomous landing, which is especially hazardous and prone to failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.