Abstract

This paper proposes a fixed-time prescribed performance control technique to address the challenge of precise trajectory tracking control for unmanned surface vessels (USVs) in the presence of external time-varying disturbances and input saturation. To begin with, a fixed-time disturbance observer is created to handle the time-varying external interference. The observer can accurately estimate and compensate for the disturbance in a fixed time, which effectively improves the robustness of the system. Furthermore, to guarantee both the transient and steady-state response of the system, we employed a specific control technology that ensures the trajectory tracking error remains within a preset bounded range. Then, combined with the fixed-time disturbance observer, the command filter, the prescribed performance control technology, and the fixed-time stability theory, a fixed-time trajectory tracking control law is designed to make the trajectory tracking error of the system converge in a fixed time. Finally, an experiment was designed to validate the suggested control scheme. The results show that under the same conditions, compared with the nonlinear controller and the finite-time controller, the absolute error tracking index of this paper is the lowest, which means that the presented control scheme has higher accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call