Abstract

In this paper, fixed-time (FDT) synchronization of complex networks (CNs) is considered via quantized pinning controllers (QPCs). New control schemes with logarithmic quantization are designed, which not only can reduce control cost but also can save channel resources. The QPC with sign function can be used more generally than the QPC without sign function, but the QPC without sign function can be utilized to overcome the chattering phenomenon in some existing results. Based on designed Lyapunov function and different control schemes, several FDT synchronization criteria expressed by linear matrix inequalities (LMIs) are presented. Moreover, a numerical example is presented to illustrate the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.