Abstract

AbstractThe problem of fixed‐time formation control for a class of second‐order nonlinear multi‐agent systems is studied. For a class of such systems, a control algorithm is proposed to maintain the connections among the agents while avoiding collisions. Furthermore, a radial basis function neural network is used in the design to precisely approximate the nonlinear function for the nonlinear terms in the model. Then, a dynamic sliding mode control method is proposed to suppress the chattering phenomenon that may arise due to the sliding mode control. A sufficient condition for the system to achieve fixed‐time formation is obtained by using different methods, such as Lyapunov stability. Finally, the effectiveness of the proposed algorithm is verified by example. Simulation experiments reveal that the proposed method has faster error convergence and better robust control than conventional algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.