Abstract

AbstractThe finite element formulation and implementation of the Fixed‐Point Iteration (FPI) to linear/nonlinear structural static or dynamic analysis are developed. The direct and tangent formulations are presented and compared with the Newton–Raphson method (NRM). ‘Modified’ FPI algorithms have also been derived. A graphical interpretation of the method is introduced and suggested to call the FPI ‘the Saw method’. Mixing both the FPI and NRM is shown to be possible and may be useful in some applications. The overall strategies, iterative algorithms, and the appropriate norm convergence criteria necessary to implant the FPI into existing finite element programs are also included in the development.The superiority of the FPI over the NRM as seen from the development and the formulation lies in three major factors. First, the existing assembly process of element matrices is eliminated completely from the nonlinear finite element analysis. Secondly, the Gauss elimination or Crout's method is also eliminated. In the finite element terminology, this means that nonlinear structural static or dynamic responses can he obtained without recourse to the inverse of the structural stiffness matrix. Thirdly, the FPI can also be applied equally to linear structural analysis. Hence, the assembly process and the programming and storage associated with it can be removed from the existing finite element programs.While the FPI can solve problems that the NRM can, it will also be able to handle some engineering problems where the latter cannot. Buckling problems and problems where the force–displacement curve changes curvature are examples where the FPI is expected to be efficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.