Abstract

This paper presents a fixed-point mean-square error (MSE) analysis of coordinate rotation digital computer (CORDIC) processors based on the variance propagation method, whereas the conventional approaches provide only the error bound which results in large discrepancy between the analysis and actual implementation. The MSE analysis is aimed at obtaining a more accurate analysis of digital signal processing systems with CORDIC processor, especially when the design specification is given by the signal-to-noise ratio or MSE. For the MSE analysis, the error source and models are first defined and the output error is derived in terms of MSE in the rotation mode of the conventional CORDIC processor. It is shown that the proposed analysis can also be applied to the modified CORDIC algorithms. As an example of practical application, a fast Fourier transform processor using the CORDIC processor is presented in this paper, and its output error variance is analyzed with respect to the wordlength of CORDIC. The results show a close match between the analysis and simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.