Abstract

Topological indices are often used to predict the physicochemical properties of molecules. The multiplicative sum Zagreb index is one of the multiplicative versions of the Zagreb indices, which belong to the class of most-examined topological indices. For a graph G with edge set E={e1,e2,⋯,em}, its multiplicative sum Zagreb index is defined as the product of the numbers D(e1),D(e2),⋯,D(em), where D(ei) is the sum of the degrees of the end vertices of ei. A chemical tree is a tree of maximum degree at most 4. In this research work, graphs possessing the maximum multiplicative sum Zagreb index are determined from the class of chemical trees with a given order and fixed number of segments. The values of the multiplicative sum Zagreb index of the obtained extremal trees are also obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.