Abstract

Optimal control of bilinear systems has been a well-studied subject in the area of mathematical control. However, techniques for solving emerging optimal control problems involving an ensemble of structurally identical bilinear systems are underdeveloped. In this work, we develop an iterative method to effectively and systematically solve these challenging optimal ensemble control problems, in which the bilinear ensemble system is represented as a time-varying linear ensemble system at each iteration and the optimal ensemble control law is then obtained by the singular value expansion of the input-to-state operator that describes the dynamics of the linear ensemble system. We examine the convergence of the developed iterative procedure and pose optimality conditions for the convergent solution. We also provide examples of practical control designs in magnetic resonance to demonstrate the applicability and robustness of the developed iterative method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.