Abstract

AbstractAn industrial‐scale reactor for ethylene production was modeled using the oxidative dehydrogenation of ethane (ODHE) in a multi‐tubular reactor system, examining a variety of parameters affecting reactor performance. The model showed that a double‐bed multi‐tubular reactor with intermediate air injection scheme was superior to a single‐bed design, due to the increased ethylene selectivity while operating under lower oxygen partial pressures. The optimized reactor length for 100 % oxygen conversion was theoretically determined for both reactor designs. The use of a distributed oxygen feed with a limited number of injection points indicated a significant improvement on the reactor performance in terms of ethane conversion and ethylene selectivity. This concept also overcame the reactor runaway temperature problem and enabled operations over a wider range of conditions to obtain enhanced ethylene production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call