Abstract
In this paper, the locally fixed-time and globally fixed-time stabilization problems for the port-Hamiltonian (PH) systems via the interconnection and damping assignment passivity-based control technique are discussed. The definitions of fixed-time stability region (or region of attraction) and fixed-time stability boundary are given in this paper. From this starting point, the sufficient condition of globally fixed-time attractivity of a prespecified locally fixed-time stability region is obtained. Combining the locally fixed-time stability and the globally fixed-time attractivity of a prespecified locally fixed-time stability region, the globally fixed-time stabilization problem for PH system is effectively solved. Furthermore, the globally fixed-time control scheme independent of locally fixed-time stability region has also been derived by constructing a novel Lyapunov function. A illustrative example shows that the results obtained in this paper work very well in fixed-time control design of PH systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.