Abstract

This paper concerns with global fixed-time trajectory tracking of robot manipulators. A simple nonlinear inverse dynamics control (IDC) is proposed by using bi-limit homogeneity technique. Lyapunov stability theory and geometric bi-limit homogeneity technique are employed to prove global fixed-time tracking stability. It is proved that there exists a convergence time that is uniformly bounded a priori and such a bound is independent of the initial states such that the tracking errors converge to zero globally. The appealing advantages of the proposed control are that it is fairly easy to construct and has the global fixed-time tracking stability featuring faster transient and higher steady-state precision. Numerical simulation comparisons are provided to demonstrate the improved performance of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.