Abstract
This paper devises a fixed-time distributed adaptive formation control algorithm under the event-triggered framework to guarantee the expected formation pattern for multiple quadrotor unmanned aerial vehicles (QUAVs) with full-state constraints. The multiple QUAVs subject to full-state constraints are transformed into the ones that are free from any constraints via a time-varying nonlinear transformation function (NTF), which is effective to handle the case regardless of whether there exist state constraints. The issue of “explosion of complexity” (EOC) as well as singularity problem are fully coped via the fixed-time command filter and the smooth switch function, respectively. To further improve the control performance of multiple QUAVs, the nonsmooth error compensation mechanism is constructed to compensate the filtered error resulting from command filter. The rigorous stability analysis of the developed event-trigger-based distributed formation control scheme proves that all signals of the closed-loop system are fixed-time bounded, and the states of multiple QUAVs will not violate the prescribed constraints and the formation tracking errors converge to a small region around the origin in a fixed time. Finally, simulation examples are performed to delineate the validity of the proposed distributed formation control algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Aerospace and Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.