Abstract

AbstractWe study the discrete dynamics of standard (or left) polynomials $f(x)$ over division rings D. We define their fixed points to be the points $\lambda \in D$ for which $f^{\circ n}(\lambda )=\lambda $ for any $n \in \mathbb {N}$ , where $f^{\circ n}(x)$ is defined recursively by $f^{\circ n}(x)=f(f^{\circ (n-1)}(x))$ and $f^{\circ 1}(x)=f(x)$ . Periodic points are similarly defined. We prove that $\lambda $ is a fixed point of $f(x)$ if and only if $f(\lambda )=\lambda $ , which enables the use of known results from the theory of polynomial equations, to conclude that any polynomial of degree $m \geq 2$ has at most m conjugacy classes of fixed points. We also show that in general, periodic points do not behave as in the commutative case. We provide a sufficient condition for periodic points to behave as expected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.